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Abstract

A project to house 40 families in the Maharashtra region of India which began
in January 2005 was halted shortly after it commenced due to concerns over
the loading applied to a series of geodesic domes which form a large portion of
the whole complex. Vigyan Ashram, the organisation that manufactures the
domes, issued a request for the development of an affordable computer program
that would allow them to model the structural response of the domes. The
ensuing research into the design of the geodesic domes and the development of
a spreadsheet based finite element package are the subject of this dissertation.
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Project plan

Introduction

A project to house 40 families in the Maharashtra region of India which began in January
2005 was halted shortly after it commenced due to concerns over the loading applied to
a series of geodesic domes which form a large portion of the whole complex. The domes
had soil packed over them, a condition which was never anticipated in the original design.
The need for a method to model the structural response of the geodesic or “Pabal” dome
was highlighted by Vigyan Ashram, the Non Governmental Organisation (NGO) that
manufactures the domes; this dissertation describes the research into the Pabal dome and
the development of a bespoke finite element analysis (FEA) package capable of running
in Microsoft Excel.

Objectives

Vigyan Ashram locally produces the geodesic domes as do-it-yourself kits for the lower-
middle class of both rural and urban populations. The original design was adopted in
the aftermath of the 1993 Killari earthquake, aiming to provide durable, low cost housing
capable of withstanding the earthquakes, rains and winds of India for those that lost their
homes.

Of the 120 geodesic dome kits supplied to the Water Bank housing project, 40 were
planned to be subterranean and were therefore affected. Vigyan Ashram, together with
another NGO, engINdia, asked for research into the geodesic dome’s current incarnation
to be carried out. The Water Bank project highlighted the need for a method of modelling
the structural response of geodesic domes, as an assessment of the loading encountered
by the domes would allow recommendations to be made as to how the design could be
adapted to accommodate the expected loading.

Vigyan Ashram’s main desire was for a structural analysis package without the asso-
ciated licensing costs, to allow their science and technology centre to assess the geodesic
dome’s structural response in-house. This would provide significant long term benefits
for Vigyan Ashram, removing the need for outsider aid with such design problems in the
future. If appropriate, students at Vigyan Ashram would also use the developed method
to further their understanding of structural behaviour.

It was hoped that a reliable method of analysis would increase the number of potential
uses of the structure and hence its market demand, benefiting both the community and
the business that manufactures the dome, which was founded and run by an ex-student
of Vigyan Ashram.

The objectives of this project may be summarised as follows.

1. The development of a method of finite element analysis for geodesic dome structures
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using Microsoft Excel 2003. The program needed to provide a user friendly format
that gave the user the opportunity to define a geometry, select appropriate material
properties and apply a variety of loading conditions. It was required to output
information about nodal displacements and forces in the elements.

2. The assessment of the dome joints used in the structure to determine their design
limits. Based on these findings, a relationship between material parameters and the
ultimate failure strength of the connections was to be developed.

3. The development of an additional spreadsheet that would allow the user to calculate
all the relevant dome fabrication details - how many different struts are required,
how long they are, how many bolts are required for sufficient connection strength
etc.

Project timeline

This project was to be carried out over a period of 28.5 weeks - from the end of September
through to mid-May. A Gantt chart breakdown of the project plan may be found in
Appendix A, with all the major project deadlines highlighted.

Work was broadly categorised into three phases.

• Phase I: Initial research and planning; lasting from September through to January,
culminating in the submission of the literature review. In this phase, background
reading and discussion with Vigyan Ashram would lead to the development of a list
of objectives and a project plan. Additionally, preparation work for the later tension
testing work would be scheduled, including the submission of a risk assessment and
the production of engineering drawings to fabricate the required dome joints.

• Phase II: Data collection; overlapping with Phase I, from December to the end of
April. Here, experimental work would be carried out and the spreadsheets devel-
oped, culminating in the submission of a draft version of the final report.

• Phase III: Project conclusions; from April until the concluding oral exam in May.
Upon return of the draft report from the project supervisor, modifications would be
made and the final project submitted on the 29th of April. Additionally, a poster
design for display in the department would be produced and preparation for the
oral exams would occur in this period.
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1 Introduction

The project plan included in the prelude of this report defines the project objectives
agreed with Vigyan Ashram and the expected timeline in which they were to be achieved.
The literature review provides context and background information to justify the need
for this work and the theory section summarises the necessary information required to
understand the FEA method developed in Excel.

The main body of the report covers three main aspects of the project.

1. The development of a geodesic dome model and the subsequent analysis of the
dome using Strand7, a commercial FEA package, which provided an early basis
for gathering results and a benchmark against which to compare the Excel based
method.

2. The development of a relationship to predict the failure strength of the joints from
the material properties and geometry, using a combination of physical tension testing
and stress analysis.

3. An overview of the finite element (FE) method developed in Excel.

In the final part of the report, the success of meeting the objectives outlined in the
project plan is discussed and conclusions are drawn, with recommendations for further
work in this area.

2 Literature review

2.1 Introduction

The purpose of this literature review is to give context to the relevance and necessity of
the work undertaken in this dissertation, and to introduce the concepts and definitions
that will aid the understanding of the rest of the work herein.

Firstly, a brief history of the geodesic dome’s role in the reconstruction and rehabil-
itation in wake of the 1993 Killari earthquake is given. The NGO that has ultimately
continued to locally produce the dome kits to the present day, Vigyan Ashram, is then
introduced. The work halted at the Water Bank project in 2005 is used to demonstrate
the need for an assessment of the loading on the geodesic domes.

The second part of the literature review examines the definition of a geodesic dome
and looks briefly at its history. The strengths and weaknesses of geodesic domes are
discussed, and the modified version of the dome used by Vigyan Ashram is introduced.

Finally, the possible methods of braced dome analysis are reviewed and the decision
to produce an Excel based program is justified. Previous work in this area is reviewed,
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and the shortcomings are used to justify Vigyan Ashram’s need for a bespoke structural
analysis package.

2.2 Pabal

2.2.1 Earthquake and aftermath

The following description of the earthquake and aftermath are based upon extracts from
the account of Professor Horst Rolly [Rolly, 2007], who lived in the region at the time of
the quake.

In the early hours of the morning of the 30th September 1993, the Killari earthquake
struck the Maharashtra province of India. The first quake lasted for 40 to 50 seconds,
survivors recounting that houses “swayed like a cradle” before they caved in and buried
people underneath. Animals, traditionally staying in rooms attached to houses, met the
same fate. The magnitude of this disaster became apparent only days later; 7,928 human
lives lost, a further 16,000 were injured and more than 15,800 livestock were killed. The
damage was total in 52 villages of the Latur and Osmanabad districts, but the effects of
the disaster were felt in more than 2500 villages in the 11 neighbouring districts.

Real poverty proved to be a blessing as the landless poor lived in thatched-roof build-
ings made of straw and reeds or split bamboo, finished with mud-plaster. These houses
performed extremely well, suffering only minor cracks to the mud plaster walls. The
structures that suffered most were those constructed of thick masonry to provide better
insulation against the summer heat. Local builders reported that “. . . the failure of stone
masonry during the earthquake was largely because of the excessive wall thickness de-
manded by the Maratha households for thermal comfort and storage of valuables within
the thickness of the walls.” No official engineering standards existed in rural Maharashtra
before the quake; often boulders were piled upon shallow foundations, bonded only with
minimal cementing. In normal conditions these constructions are relatively stable, but on
the soft Black Cotton soil of the region they collapsed easily when the earth shook.

No early warning system for such a natural disaster was in place and no comprehensive
disaster management plan existed before the quake. Regardless, the civic response was
spontaneous. Able-bodied survivors assisted the injured and dug in debris to rescue the
living and recover the dead with their bare hands as initially no excavation equipment
was available. The Maharashtra state government in Bombay responded to the news im-
mediately by sending helpers from civic bodies and doctors from neighbouring districts
along with supplies. The Indian armed forces were brought in to aid with the rescue and
relief operation, with some 10,000 troops bringing in lifting machinery, tents and water
purification units. The press rushed to the scene, spreading word of the tragedy, ulti-
mately leading to fund raising initiatives, both national and international. As more and
more donations poured into government collection and distribution centres the authorities
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became unable to handle them, until ultimately the Chief Minister publicly announced
three days after the quake that “. . . no additional help of unsolicited kind is needed either
in the form of items or volunteers. . .We already have much, so much.”

For the longer term reconstruction effort, bilateral donations from the United Nations
Development Program, the Asian Development Bank and a World Bank loan granted
the Indian Government US$358 million as a low interest emergency loan with a 30 year
payback period to add to its resources. In the third week of October 1993, the Govern-
ment of Maharashtra invited NGOs for round table discussions of how to proceed with
reconstruction efforts. The state government wanted to ensure that despite the large va-
riety of agents involved in the reconstruction effort, the houses met common standards of
earthquake safety. However, before the technological aspects of proposals could be fairly
assessed, the Indian media reported that politicians were attempting to exclude certain
designs: “. . . the chief minister and his cabinet colleagues are also believed to have taken
the psychological aspect into account. Non-conventional structures like geodesic domes
were ruled out because people are not used to living in them, it is learnt.” [Indian Express,
October 13th 1993]. By the time of the round table discussions, Adventist Development
and Relief Agency (ADRA) India had already contacted the villagers of Gubal about the
possibility of building geodesic domes as a safe housing device. The villagers agreed that
a sample geodesic dome could be built at the resettlement site for the villagers to inspect
and scrutinise. On the condition that the dome met village approval, the design would
be adopted as a rehabilitation measure. The Gubal village elder ultimately submitted a
request for 365 houses to be built, rather than the 182 originally planned.

2.2.2 Vigyan Ashram and engINdia

Early discussions of ADRA India with the people of Gubal concluded that safe housing
was of paramount importance in the villagers’ opinion. The horrifying experiences of
the Killari earthquake had turned much of the village into a graveyard, and none of the
surviving inhabitants wished to stay and live in old Gubal. After careful comparison of
earthquake resistant architectural designs, ADRA India decided upon the geodesic dome.
Vigyan Ashram, a research institution based in the village of Pabal had experimented with
the geodesic dome for a number of years. Dr Kalbag, Vĳay Kumar and other like-minded
engineers based there developed a modified version of the dome called the “Pabal” dome,
which was subsequently marketed by a number of entrepreneurial small scale industries,
producing prefabricated components as part of low cost do-it-yourself kits and taking
orders to build and maintain the domes. Vigyan Ashram has continued to manufacture
and supply dome kits since the 1993 Killari earthquake, focusing on making low-cost, safe
and comfortable housing that is affordable for the lower-middle class of both urban and
rural populations.

As well as a research institution, Vigyan Ashram serves as a science centre for rural
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youth. The centre was founded in 1983 by the late Dr Kalbag. Places are offered both to
students in India’s public high school system, and also to school drop-outs frustrated by
conventional education. Vigyan Ashram’s philosophy [Kalbag, 2004] places an emphasis of
teaching science through practice; to experiment, measure and record data, to recognise
patterns and to form and test hypotheses. The course is novel in two aspects: what
it achieves through student input and how it benefits the village economy. Students
undertake projects in numerous areas including water resource development, construction,
workshop technology, energy, transport, environment agriculture, and home & health.

engINdia1 is a partnership between 6 students from the University of Cambridge, Mas-
sachusetts Institute of Technology (MIT) and the Indian Institute of Technology Bombay.
An expedition was conducted during the summer of 2005 to the area of Pabal, Maharash-
tra, where the engINdia team worked with Vigyan Ashram and the local community to
gain an understanding and appreciation of the development issues concerning rural India
which could be tackled through engineering.

Through this relationship, MIT have established a FAB LAB in Pabal through their
“Bits and Atoms” program, with the intention of providing Vigyan Ashram and the local
community the necessary tools to empower them to solve their own engineering problems.
FAB LABs2 share core capabilities, so that people and projects can be shared across
them. The kit includes: a computer controlled lasercutter, a large scale milling machine,
a signcutter, a micron resolution precision milling machine and programming tools for
low-cost, high-speed embedded processors.

2.2.3 The Water Bank project

The Water Bank project is a recent rural housing project intended to house 40 families
in Maharashtra. Work that began in January 2005 has been halted due to concerns over
the loading applied to a series of geodesic domes which form a large portion of the whole
complex. The domes have soil packed over them which was never anticipated in Vigyan
Ashram’s original design.

The complex is an experimental 8 million rupee investment (£116,000 at Jan 2009
rates) to house 40 families in Ankoli, Maharashtra. Of the 120 domes supplied to the
Water Bank housing project 40 are planned to be subterranean and are therefore affected.
The complex is intended to provide each of the families with a guaranteed 2,000 litre water
supply year-round, a 300 square foot greenhouse, 350 square foot cave house, 900 square
foot work area, a terrace, a courtyard and 0.5 acres of land. The intention of the project is
to promote sustainable housing and fulfil the desires of the residents to be self-employed.

1http://www.engindia.net/
2http://fab.cba.mit.edu/
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2.2.4 Structural analysis

When the Water Bank project halted, Vigyan Ashram and engINdia approached the
student led charity Engineers Without Borders UK3 to request that more research be
conducted into the design of the geodesic domes manufactured in Pabal.

There is a clear need for a method to model the structural response of the geodesic or
“Pabal” dome under various loading conditions. Vigyan Ashram’s original brief requested
that an assessment of the loading encountered by the domes should be performed and
design alterations should be recommended to accommodate the expected loading.

Following discussions with Vigyan Ashram, it emerged that they wished to alter the
original brief to focus the design of a bespoke structural analysis package. This would
allow Vigyan Ashram to analyse the structural response of the domes in-house without
the need for buying costly finite element software licences or requesting outsider help.
This would be a further step to empower the locals to solve their own engineering prob-
lems in the future. An in-house analysis method would allow assessment of the dome’s
structural response in situations previously not considered. Vigyan Ashram hoped this
would increase the number of potential uses of the structure and its market demand.
If appropriate, students at Vigyan Ashram would also use the package to further their
understanding of structural behaviour.

2.3 Geodesic domes

2.3.1 Buckminster Fuller

Engineers and architects have always held a special interest for structural systems that
enable them to cover large spans with minimal interference from internal supports. It
is perhaps no surprise then that dome structures, capable of encompassing maximum
volume with minimum surface area, are one of the oldest structural forms and have been
used in architecture since the earliest times. The earliest geodesic dome was designed and
built in 1922 by Walter Bauersfeld in Jena, Germany [Makowski, 1979]. It was not until
the 1950s, and largely due to the efforts of Buckminster Fuller, that the geodesic dome
became a vogue form of design.

Buckminster Fuller was an American born in Massachusetts, USA. Though he never
possessed formal qualifications in engineering or architecture, he influenced numerous
architects and some engineers to a greater extent than many eminent members of their
professions [Zung, 2001]. He filed for a patent in 1951 for an improved version of the
geodesic dome design, which has since been used in structures such as the Tacoma Dome
(WA, USA), Poliedro de Caracas (Caracas, Venezuela) and The Eden Project (Cornwall,
UK).

3http://www.ewb-uk.org/
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Buckminster Fuller’s passion for geodesic structures came from the design’s affinity
with Nature, an effect he described as the “energetic-synergetic” geometry of his domes.
“Energetic” refers to Fuller’s belief that Nature always builds the most economic struc-
tures. He claimed that geodesic domes built upon principles embodying force distributions
similar to those of atoms, molecules, and crystals, would form the lightest, most efficient
forms of construction. Fuller defined synergy as the “integrated behaviours of nature and
the behaviour of a whole system unpredicted by the behaviour of any sub-assembly of
its components.” For example, hydrogen and oxygen gases, when combined in the right
conditions produce water, and this could not be predicted by the individual properties of
either gas. Similarly, the geodesic dome exhibits a stiffness and rigidity greater than that
predicted based on the sum of the individual components that make it.

2.3.2 Definition

Figure 1: Isosahedron Figure 2: Great circles [Morgan, 1981]

Buckminster Fuller based his original design on the sphere division of an icosahedron,
(see Figure 1) although geodesic domes have since been constructed using octahedron
and dodecahdreon symmetry systems to circumvent Buckminster Fuller’s patent. The
aforementioned shapes are all part of the family of platonic solids - polyhedra made up
entirely of congruent regular polygons. An icosahedron exploded onto the surface of a
sphere produces twenty equilateral spherical triangles, the vertices of which may also be
described by the intersection of three great circles (circles with a diameter equal to that of
the sphere) and are referred to as geodesic points, such as A, B and C in Figure 2. Fifteen
great circles also fully define the primary bracing of a geodesic dome. If the chords that
join the vertices are straight lines rather than curves, planar triangles are formed and this
creates the geodesic network commonly used in structures.

The primary bracing is truly geodesic, but impractical to use in most circumstances
as members quickly develop excessive slenderness ratios as the diameter of the dome
increases. To obtain a more regular network, a secondary bracing is introduced, modularly
dividing each equilateral triangle into a number of subdivisions. There are two possible
classes of geodesic subdivision; for Class I subdivision, the dividing lines are parallel to the
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Figure 3: Class I sub-division [Motro, 1984] Figure 4: Class II sub-division [Motro, 1984]

edges of the primary bracing (Figure 3); in Class II, the dividing lines are perpendicular to
the primary bracing (Figure 4). Class I subdivision produces geometry where the edges of
the triangle lie on a great circle, which leads to simple design of a hemisphere with planar
connections; this may not be achieved with a Class II subdivision. Class II subdivisions
require a smaller number of bar lengths, which is advantageous for fabrication; however,
the differences between individual bar lengths are resultantly greater in a Class II dome,
and this produces a less uniform stress distribution. Additionally, Class II domes can only
be achieved with an even frequency of subdivision.

(a) V2 (b) V4 (c) V8

Figure 5: Example sub-division frequencies [Motro, 1984]

A subdivision, or “frequency” is defined by the number of triangles each edge of the
primary bracing is divided into (Figure 5). The frequency is often referred to in short-
hand as a number, with the prefix “V”. It should be noted that if secondary bracing is
introduced, the triangles are no longer perfectly equilateral - the bars forming the skeleton
show variations in length, and the number of different lengths required to fabricate the
dome increase with the frequency of subdivision.

Odd order frequency domes cannot produce a hemispherical shape, as an equatorial
perimeter ring is only produced for even order frequencies. Odd order frequency subdivi-
sions are nominally referred to with the suffix 3/8ths or 5/8ths, to indicate respectively
if the ground ring is above or below the equator of the geodesic sphere.
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2.3.3 Explanation of behaviour

The manner in which a braced dome behaves depends on the configuration of the members.
Fully triangulated domes, such as geodesic domes have a high stiffness in all directions and
are kinematically stable (no mechanisms) when idealised as a space truss. A dome which
is not fully triangulated is not kinematically stable when idealised as a truss and stiffnesses
may vary greatly in different directions on the dome’s surface. While radial cable domes
may exhibit greater stiffness to uniform loads, triangulated domes demonstrate greater
stiffness to non uniform and concentrated loads [Kardysz et al., 2002].

The forces in a geodesic network are an equilibrated combination of tension and com-
pression. Tension forces are global and continuous, while compression forces are local and
discontinuous. Buckminster Fuller coined the term tensegrity, a portmanteau of tensional
integrity, to convey the concept of coherence and resilient elasticity of geodesic networks.

Richter [1975] argues that the use of geodesic subdivision produces structures of greater
strength than conventional braced domes. The triangle is a planar figure which has
maximum rigidity accomplished with the least effort. Symmetrical triangular systems
provide the most economic energy flow, and a geodesic network produces a structural
form with self stabilizing properties.

2.3.4 Strengths and weaknesses

A dome is a typical example of a synclastic surface, where surfaces are of positive Gaus-
sian curvature; i.e. where the curvature of any point is the same sign in all directions.
Synclastic surfaces are not developable; i.e. they can not be flattened into a plane without
shrinking or stretching of the chords. This is why in practice domes cannot be built from
one uniform member size. However, Makowski [1965] points out that geodesic domes are
exceptionally good in this respect; even for sizable spans only a small number of differ-
ent bars sizes are required, making the structure ideal for optimising the manufacture
of components and prefabrication. Morgan [1981] describes how the Kaiser Aluminium
Company (USA) was one of the first companies to take out a full license under Buckmin-
ster Fuller’s patent for a concert hall in Honolulu, Hawaii. The 44.2m dome was erected
within 22 hours of the components arriving, and within 24 hours a concert was held at
the venue by the Hawaiian Symphony Orchestra to an audience of 1832.

In high risk earthquake areas such as Japan, quake resistant designs have evolved
through trial and error exercises over the centuries. Modern design guidelines have
emerged from such empirical data; the rules listed below are extracts from a planning
aid for architects and engineers [Dowrick, 1978] and are used to highlight some of the
properties that make the geodesic dome a highly earthquake resistant design.

• The degree of compactness in a building correlates with its resistance against seismic
shock. A hemispherical structure is the most geometrically possible compact form
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of construction, enclosing maximum volume with minimum surface area.

• Reinforcing elements should be rigid and symmetrically organised, located close to
the building boundary and distributed evenly throughout the structure; the geodesic
skeleton does exactly this.

• The centre of gravity should be as low as possible. A dome has a lower mass point
than any cuboid structure of similar proportions.

• The construction should be elastic and deformable to a certain extent, especially
through the core grid. The geodesic dome exhibits this behaviour, and empirically
has been proven to survive even severe earthquakes with only minor cracking in the
cladding.

Geodesic domes produce extremely light skeleton structures that are very stiff and rigid,
enclosing a large area without need for internal supports. Due to the light weight, the
round shape of the dome perimeter, and the generally uniform load distribution of geodesic
dome structures, deep foundations are not normally required. Construction of shallow
foundations allow a considerable saving in time and money over deep foundations.

The geodesic dome is, however, not without disadvantages. One complaint is that the
perimeter chords following the shape of an icosahedron produce an irregular or ragged line
that may be objectionable on architectural grounds; the aesthetic appearance of the dome
is largely dependent on how these closures are treated. The most common objections are
functionalist; due to the hemispherical shape of the structure, effective sound isolation is
difficult to achieve through partitioning of rooms, leading to a perceived loss of privacy.
Furniture, unless custom made, also presents a problem due to the curved walls of the
structure which can result in some loss of space.

2.3.5 The Pabal dome

Vigyan Ashram’s Pabal dome design is a developed version of the basic geodesic dome
structure. The Pabal dome is based on a V3 5/8ths Class I dome as shown in Figure 6.

The dome is made of prefabricated equal angle struts and disc hub joints made from
mild steel. A house kit may normally be assembled in one day using only simple nut and
bolt construction, without the need for specialised equipment. The kit requires no brick
masonry, so is easy to transport. The finished skeleton structure is clad using multiple
layers of chicken wire reinforcing mesh and ferrocementing (or “guniting”) technology; a
form of spray on concrete that is cheaper, lighter and faster than cladding using masonry.

The basic structure is a cost effective form of design, costing only RS.200/ft2 (£9.21/m2,
January 2009). Domes can be interconnected to form interesting housing designs and add
further rooms or space. The cladding forms an insulating thermal mass that keeps the
house cool all year round.
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Foundation closure Disc joint

Door

Figure 6: Pabal dome

2.4 Braced dome analysis

2.4.1 Idealisations

Mullord [1984] states that before any engineering structure can be analysed, it has to be
represented by an idealised mathematical structure whose behaviour models sufficiently
closely that of the original structure. Two idealised methods exist for braced dome struc-
tures: equivalent shell methods and discrete structure methods. The equivalent shell
method may be divided further into two sub-groups - orthotropic shell theory and finite
difference theory. Both methods use approximations which aim to smear the effect of
discrete members uniformly over the surface of an equivalent shell, leading to a set of gov-
erning differential equations that are solved using a harmonic solution. The second group
of methods allow the analyst to tackle the discrete structure directly. Again, this may
broadly be split into two sub-groups4: space truss analysis, where all joints are assumed
pinned, and space frame analysis, where joints are assumed continuous. Both discrete
structure methods produce a large set of simultaneous equations that can only be feasibly
solved with the aid of a computer.

Equivalent shell methods are best suited to early design work or for structures too
large to be analysed discretely. Over the years, computers have become more affordable
and more powerful, and the use of finite element analysis has become increasingly popular
method of modelling structures that are too time consuming or complex to resolve by hand
[Coates et al., 1988]. Vigyan Ashram favoured the development of a spreadsheet based dis-
crete structure method, as such software is widely available and significantly cheaper than
dedicated analysis packages. Matlab and C++ based FEA programs were alternatives
also considered, but were ruled out due to the required presupposition of programming

4Other direct analysis methods do exist, for example, the equilibrium method discussed by Quintas and
Avila [1993] or Endogenous force analysis [Burkhardt, 2007], but space frame and space truss idealisations
are by far the most common.
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knowledge in order to understand the workings of the structure stiffness method. It is
important to understand that Vigyan Ashram’s students will have limited programming
knowledge due to the vocational-style training used there to teach. Microsoft Excel 2003,
a widely available spreadsheet package that Vigyan Ashram are familiar with using, was
mutually decided to be the most appropriate platform to develop the solution with.

2.4.2 Analysis

Discrete structure methods can be modelled using linear or non-linear analysis. Linear
analysis assumes a linear stress strain relationship, and together with information about
the material behaviour can be used to check for local member or joint failure. However,
instability effects beyond the point at which the material yields require non-linear analysis
to account for member effects such as plastic yielding. Non-linear analysis methods have
been extensively studied by many authors [Meek and Loganathan, 1989], and are based
on either the finite element method or on the beam-column approach.

To decide which analysis method was most appropriate, it was important to under-
stand the level of complexity of the different methods. Non-linear methods are generally
more technical and more computationally exhaustive, but produce a more accurate so-
lution. However, a more accurate, more technologically complex method was not neces-
sarily the most relevant technology for Vigyan Ashram to use. Vigyan Ashram required
a straightforward analysis method that produces sensible design information for a com-
prehensive range of loading options. Linear analysis, being less computationally intensive
and requiring less engineering knowledge to understand was therefore better suited for
use in Excel.

Figure 7: Brown University’s 2D FE program
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2.4.3 Previous work

The concept of using Excel for the purpose of structural analysis is not entirely new. Teh
and Morgan [2005] highlight the benefits of the platform for teaching the stiffness method
to final year university students at Curtin University of Technology, Australia. Similarly,
a method of forming basic 2D pin jointed analysis developed by Brown University, USA5

is available freeware for solving simple nodal applied loads (Figure 7).
However, these examples are limited to two dimensional analysis of a limited number

of members. The interfaces are also at a very basic skeleton level - requiring the user to
specify each nodal coordinate, member stiffnesses, fixities and each nodal load, resulting
in a very time consuming and unnecessary data entry exercise. Some of these programs
also make use of built in matrix manipulation functions that are not designed to work
with large matrix problems. Vigyan Ashram’s request was for a user friendly interface
that would streamline the analysis process of a geodesic dome and work with a variety
of different load situations. To achieve this, a fresh approach and a bespoke design were
required.

3 Theory

The following section introduces the underlying theory required to understand how the
FEA package covered in Section 6 was developed. The emphasis here is on the processes
involved in forming and solving a system, rather than justification of why a particular
method is most suitable (this is covered in Section 2.4).

The reader is assumed to have a grasp of matrix mathematics; understanding matrix
addition, subtraction, multiplication, inversion and transposition6. A previous under-
standing of the stiffness method will be helpful, but is not essential.

3.1 Stiffness method

The stiffness method allows us to analyse a structure which is an arbitrary assembly of
simple structural members by breaking down the components into “elements” (members)
and “nodes” (joints). It can deal with a wide range of design situations, including space
frame structures (where joints are treated as continuous). However, only the method for
a space truss system needs to be discussed here for the reasons described in Section 2.3.3.

The basis of the stiffness method for a structure limited to pin jointed elements is that
every member has analogous properties to those of a spring; that is, an axial load F may
be applied to the end of a spring, and this is internally carried, causing a resultant change
in length u.

5http://www.engin.brown.edu/courses/en3/notes/Statics/Structure_tutorial/Structure_tutorial.htm
6If not, most maths textbooks cover the topic of matrices; see for example Stroud [2001].
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The relationship between applied load and the resulting displacement is a property of
the element, known as a spring constant, or stiffness k (Equation 1), expressed as

F = ku . (1)

It is possible to model the response of a structure by connecting together a system of
individual spring elements and solving to determine the displacements. In order to find
a structure’s response to a known set of forces, a way of determining the stiffness of each
member must be found. Though the derivation of element stiffness is quite elementary,
it has been included to help explain the steps taken to post process the spreadsheet data
in Section 6.4.1.

Intuitively, if the section is made larger, or a different material is used, the value of k
will change. Consider the expressions for stress (σ) and strain (ε) in an element

σ = F

A
(2)

and
ε = u

L
, (3)

where F is the axial force in the member, A is the area of the cross section, u is a
resultant change in length and L is the length of the original member. Now, for a linear
elastic material, these expressions may be related using Hooke’s Law:

E = σ

ε
= F/A

u/L
= FL

uA
, (4)

and rearranging gives

F = EA

L
u . (5)

Comparing Equation 5 to Equation 1, it is clear that an expression for the spring
constant in terms of geometric and material properties of the material exists; k = EA

L
.

Now that the stiffness for an individual element has been determined, the principle
needs to be extended to work for a three dimensional system.7 In 3D the expression
relating forces and displacements is much the same, however a total of six degrees of
freedom (DOF) must now be considered for each element, as each node can displace in
three dimensions: u, v and w (Figure 8).

Rather than dealing with multiple linear expressions, it is convenient to express the
local stiffness of an element using matrix notation:

7The reader may wish to follow a worked example for a 1D or 2D structure stiffness method from a
textbook, such as Mullord [1984], before reading the remainder of this section.
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Figure 8: DOF for a pin jointed element in a local coordinate system
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(6)

or, in shorthand form

{flocal} = [klocal] {u} . (7)

Equation 7 uses a local, right-hand rule coordinate system x’, y’, z’ (with the x’ axis
aligned with the direction of the truss element as shown in Figure 8). In a 3D structure,
the local Cartesian coordinate system is unlikely to coincide with the coordinate system
of the global axis X, Y, Z. In order to obtain meaningful stiffness matrix, a transformation
matrix [T] is applied to the local stiffness matrix to obtain a common a global stiffness
matrix for each element8.

[Kglobal] = [T ]T [klocal][T ] , (8)

where

[T ] =
R0 0

0 R0

 , (9)

and the general form of R0 is
8The derivation of this equation has been omitted, but is covered in Coates et al. [1988] and most

good texts on FEA.
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[R0] =
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z

 , (10)

where L is the length of the member, and its projected lengths on each of the global
axes X, Y and Z are Lx, Ly and Lz respectively. The angle γ is a rotation of the element
about the x’ axis in Figure 8 to align the cross section of the element. In the case of a pin
jointed (truss) structure, the shape and orientation of the cross section is unimportant as
bending moments are ignored. Hence, for a space truss, γ = 0 and Equation 10 simplifies
to

[R0] =


Lx/L Ly/L Lz/L

−LxLy
L
√
L2
x+L2

z

√
L2
x+L2

z

L
−LyLz

L
√
L2
x+L2

z

−Lz√
L2
x+L2

z

0 Lx√
L2
x+L2

z

 . (11)

Once every element stiffness matrix has been transformed into a global coordinate
system, it only remains to assemble all the matrices to form the structure stiffness matrix.
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Figure 9: Assembly of the structure stiffness matrix from element stiffness matrices.

In FE programs, this is often achieved through the use of a steering matrix which
links the local numbering scheme to the global numbering (see Figure 9). Nodes that
are shared between elements will have overlapping contributions to the same cells of the
stiffness matrix.

For a truss, each element stiffness matrix is 6 × 6 and the final structure stiffness
matrix size [K] is determined by the number of nodes multiplied by the number of degrees
of freedom per node. For example, the structure stiffness matrix in Figure 9 would have
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to be composed of four nodes, as 4× 3DOF produces the 12× 12 matrix shown.

bandwidth bandwidth

(a) Low bandwidth

bandwidth bandwidth

(b) High bandwidth

Figure 10: Structure stiffness matrix bandwidth

The node numbering system used in the structure is often critical to the efficiency of
the solver, especially for large structural problems with thousands of elements. An efficient
numbering system will produce a narrowly banded set of values on the leading diagonal
of the populated matrix. The greatest width of any row in the matrix is termed the
“bandwidth”. A less efficient numbering system produces a much wider spread of results
symmetrically about the leading diagonal and therefore produces a larger bandwidth (see
Figure 10).

Finally, a matrix version of Equation 1 has been developed, in terms of a known global
force vector {F} and the structure stiffness matrix [K]

{F} = [K] {U} . (12)

3.2 Solution methods

In order to gain a useful output from Equation 12, a method of solving it is required. First,
boundary conditions are applied to the problem to define it uniquely. This is normally
achieved through fixing certain degrees of freedom in the structure to represent anchorage
to the ground.

Solving Equation 12 is not as straightforward as it may seem, as division is not possible
in matrix algebra. The closest equivalent matrix operation that emulates division is to
find its inverse [K]−1, where

[K][K]−1 = [I] , (13)

and [I] is an identity matrix, the matrix equivalent of unity. This allows us to then
solve Equation 12 as
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{u} = [K]−1 {F} . (14)

However, for a large matrix, the process of inversion is computationally intensive
and slow. Rather than tackle the inversion directly, considerably more computationally
efficient methods are used. Trevelyan [2007] categorises solvers into two groups.

• Direct solvers. These solvers use methods such as Gaussian elimination and LU de-
composition and are guarenteed to arrive at a solution if the matrix is non-singular.
The number of floating point operations required to solve a system using a direct
solver increases with the cube of the number of equations, meaning that for large
matrix FE models, the solver quickly becomes a dominant part of the run time.
Direct solvers also suffer from an accumulation of round-off errors.

• Iterative solvers. These solvers, such as the conjugate gradient method, make
an initial guess and progressively iterate towards a solution until a convergence
tolerance is reached.

Many of these methods may be found in mathematical textbooks9, however only Gaus-
sian methods will be mentioned in more detail here. Gaussian elimination has variants
such as Gauss-Jordan elimination which has its own advantages and drawbacks.

The standard method, according to Kreyszig [2006], is a popular way of solving linear
systems, based on a systematic process of elimination in the rows of the matrix in order
to reduce the system to triangular form, as then the system may easily be solved by back
substitution. As Gaussian elimination is a particularly well documented way of solving
linear systems, it is unnecessary to reiterate the method in great detail here.

3.3 Post processing

Once the displacement vector in Equation 12 has been found using a method described
in Section 3.2, it is a relatively straightforward process to obtain the internal axial forces
that form an equilibrium with the externally applied force vector.

First, the transformation matrix from Equation 9 has to be applied to the global
displacement vector in order to revert the displacements to the local coordinate system:

{ulocal} = [T ] {U} , (15)

The difference between the x’ directional nodal displacements u2 − u1 (see Figure 8)
give the overall change in length of the element which is then used to calculate the strains,
stresses and forces using Equations 2 and 3. A positive change in length indicates the
element is in tension, a negative change indicates compression.

9See for example Kreyszig [2006].
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3.4 Lateral earth pressure

The importance of the forces transmitted through the soil skeleton from particle to particle
was recognised in 1923 when Terzaghi presented the principle of effective stress, which
applies only to fully saturated soils [Craig, 2004]. For a horizontal soil mass with the water
table well below the point of interest, the pore water pressure is zero, and hence effective
and total vertical stresses at a depth below the surface, z, are equal and equivalent to the
weight of all material per unit area above that depth:

σ′v = σv = γsatz , (16)

where σv is the total normal (vertical) stress on the soil mass, σ′v is the effective normal
stress, γsat is the bulk unit weight of the soil and z is the depth below some datum line
at the surface of the soil.

To relate the distribution of vertical stresses to those induced horizontally against a
retaining structure, Rankine’s theory of earth pressure is used, which considers the state
of stress in a soil mass when the condition of plastic equillibrium has been reached, i.e.
when shear failure is on the point of occurring throughout the mass.

According to Rankine, vertical stresses in the soil remain at a constant geostatic value,
wheras horizontal stresses increase or decrease depending on the local movements of the
soil. In an active pressure zone, the retaining wall is pushed away from the soil mass in
response to the action of the soil. In the passive zone, the retaining structure is being
pushed against a resisting soil mass.

Rankine found that the relationship between the horizontal and vertical stresses in
the active region10 of the soil were related by an active pressure coefficient Ka, controlled
by the soil’s intrinsic shear strength parameter φ:

σh = Kaσv , (17)

where

Ka = 1− sinφ
1 + sinφ . (18)

4 Geodesic dome analysis

4.1 Introduction to Strand7

A commercial FEA package called Strand711 was used to build up an initial geodesic dome
model. Strand is a general purpose finite element analysis system, used in a wide range

10The passive case calculation has been omitted for the reasons discussed in Section 4.3.3.
11http://www.strand7.com/
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of applications in mechanical, civil, structural, aeronautical and biomedical engineering.
The package was chosen because it was the most appropriate general purpose structural
analysis software available at Durham University’s School of Engineering.

While a powerful analysis tool, Strand would not itself be an appropriate piece of
software for Vigyan Ashram; licensing costs for this software are high, and it operates a
black box approach to analysis. The user is required to define a model and run the solver
without guidance or explanation. Strand will then produce a solution, assuming the model
is defined correctly, without showing the intermediate calculation steps. It therefore is
not suited to teaching or explaining the FE method. However, to a competent user with a
good understanding of the theory behind the program, it is an efficient tool for modelling
the behaviour of structures.

The following sections describe the generation of geodesic geometry in Strand, the
forces that were considered to act on the structure, and the results that it produced
under various analyses.

4.2 Coordinate generation

The mathematical determination of geodesic dome coordinates may be achieved in one of
two systems: Cartesian (presented by Davis [2007]) or polar (presented by Kenner [2003]).

Figure 11: Global coordinate system used for analysis

A polar coordinate system defines the position of a coordinate relative to the origin
at the centre of a sphere by a radius r and two angles θ and ψ, using algorithms based
on formex algebra (see Sanchez-Alvarez [1984]). It is a system particularly suited to
generating spherical geometries. However, a right-hand-rule Cartesian based coordinate
system was used for developing the Strand model, as the stiffness method discussed in
Section 3.1 is based upon Cartesian transformations. All forces and displacements in
FEA are expressed in Cartesian form, and element stiffnesses are described locally and
globally by Cartesian coordinates. It was hence logical that the basis of the model should
be defined using a global Cartesian system (Figure 11).
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A trial version of a package named CADRE Geo 6.012 was used to generate the geodesic
geometry for the Strand model. CADRE is a design utility for generating a wide variety
of geodesic and spherical 3D wire frame and surface models for Computer Aided Design
(CAD) and FEA applications. In addition to generating coordinate data, the package was
able to produce dfx files that could be imported directly into Strand, saving a considerable
amount of time on assembling the elements connecting nodes manually. Setting the radius
of a V3 5/8ths dome to unity in CADRE produced a set of coordinates which could be
scaled to define the geometry of the dome for any radius in a spreadsheet.

When designing a structure, the internal floor area produced may be of greater concern
than the overall external dimensions of the structure. This was indicated to be the case
for Vigyan Ashram, as the Pabal Dome’s assembly guide initiates the dome construction
by marking the desired dome radius at perimeter ring (floor) level. Normally, the radius
is defined at the equator of a sphere, but, as discussed in Section 2.3.2, an odd order
frequency dome does not produce an equatorial perimeter ring because the structure is
not an exact hemisphere. CADRE presented an option to expand the perimeter ring of
the dome to equal the radius of the structure by applying a scaling factor to the coordi-
nates (found to be 1.016). This factor was implemented as an option in the coordinate
generation spreadsheet.

4.3 Loading

This section discusses the different loads that could act upon a geodesic dome structure,
explaining which were considered important and why. The method that nodal forces were
calculated from the applied loads is also described here. The totality of possible actions
on the structure were considered to be: self weight, wind, snow, soil, imposed, seismic
and impact.

4.3.1 Seismic and impact loads

It has already been demonstrated that the Pabal dome is an earthquake resistant form of
design (Section 2.3.4). Additionally, impact damage was considered very unlikely given the
residential use of the structure and that compound walls are often built around Indian
housing [Rolly, 2007]. As it was not therefore necessary to consider these actions for
normal design situations, it was assumed dynamic load effects were beyond the scope of
this project and could be neglected from the analysis.

4.3.2 Snow

Snow loading is often critical to dome design [Knebel et al., 2002]. However, the Ma-
harashtra region of India maintains a temperature of 20-30◦C all year, and has a record

12http://www.cadreanalytic.com/cadregeo.htm
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coldest day of 10◦C [MapXL, 2006]. It was therefore safe to assume that snow loading
would not be a design issue and could also neglected from the analysis.

4.3.3 Soil

Datum Line

z zσv = γz σh = KAγz

σv σh

Z

X

Figure 12: Horizontal and vertical stresses acting on a subterranean dome (after Landry
[2002])

Soil loading was a necessary consideration because of the dome’s subterranean use in
the Water Bank project (see Section 2.2.3). It was assumed that the loaded dome would
act as a retaining structure against any soil piled against it.

In order to calculate the forces upon the structure, Rankine’s earth pressure theory
(covered in Section 3.4) was applied to calculate the total horizontal and vertical stresses
induced by the weight of the soil, based on a depth z below a user defined datum soil
level, as shown in Figure 12. The surface area of the dome was then divided between the
nodes, allowing the calculated stresses to be converted into nodal forces.

The stresses were calculated for an active pressure case, with no resistive mass of soil
acting passively. It was conservatively assumed that the soil loading would be carried
by the dome framework alone, as this reduced the complexity of calculating horizontal
pressures for asymmetric loads.

The design assumes that the water table is below the foundations of the dome, which
was a reasonable assumption to make as the region is prone to drought [Infobase, 2000].
This meant that underground aquifers were likely to be relatively deep below ground level,
so that pore water pressure would not make a contribution to the stress state of the soil
as described in Section 3.4. It was assumed that even during the monsoon aquifers would
not recover to a level above the foundations.

The predominant surface deposit of the region surrounding Pabal village is Black
Cotton soil, as shown by the regional soil map in Figure 13 [Shroff and Shah, 2003]. This
is formed from the subaqueous decomposition or in situ weathering of basalt rocks, which
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Figure 13: Regional soil deposits of India (after Shroff and Shah [2003])

produces the mineral Montmorillonite in an alkaline environment. Montmorillonite is a
dark swelling clay commonly known in India as Black Cotton soil, due to its prosperity
for growing cotton [Ranjan and Rao, 2000]. The load contribution due to the soil in the
analysis (Section 4.5) assumed that the dome was buried in Black Cotton soil. In later
work developing the Excel spreadsheet, more soil types were added as options for analysis.

4.3.4 Wind

Bhandari et al. [2003] give general guidance to the treatment of cyclonic storms and
hurricanes, which are characteristic of India, especially during the monsoon season. They
state that cyclonic storms do not normally extend further than 60km from the coast and
that hurricane actions normally occur in the north east of India. This places Pabal (which
is around 100km from the west coast) in a relatively low risk area.

The basic wind speed and design wind pressure were determined to Indian Standards
using IS875:Part 3 [Bhandari et al., 1987]. These were chosen in preference to Eurocodes as
they are more representative of Indian wind conditions (for example, they include factors
of adjustment that account for cyclonic wind speeds). The design wind pressure pd for
the Pabal region was determined to be 0.584kN/m2, the calculations and assumptions
behind this value may be found in Appendix C.

It was conservatively assumed that the wind pressure acts only from one direction and
positively. In actual fact, the external pressure profile of a spherical structure is partly
negative (i.e. suction) for angles between approximately 45◦ and 135◦ relative to the
wind direction, which would act to reduce load on individual elements (see Figure 14).
Stabilising wind pressures produced at the back of the dome due to vorticies were ignored.
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Figure 14: External wind pressure coefficients for a spherical structure (from Table 18,
Bhandari et al. [1987])

For simplicity, forces on individual members were not considered; rather, forces were
considered to act on the structure as a whole.

In order to get the total wind load acting on a particular building, a force coefficient
based on the geometry of the structure was used. Together with the effective face area
Ae and design wind pressure pd this gave

Fw = CfAepd . (19)

For a rough spherical structure, Table 20 of IS875 gave the force coefficient as Cf = 0.7.
The effective area was taken to be projected area of the dome facing the wind, which in
turn was a function of the dome geometry. The total wind loading on the face of the dome
(found with Equation 19) was proportionally divided between the nodes by projected area
to obtain the forces on individual nodes.

4.3.5 Self weight and imposed loads

The main components that contribute to the weight of the structure are the elements
and the ferrocrete shell. These were initially represented using truss elements and plate
elements with specified densities in conjunction with Strand’s gravity function. This
automatically calculated the nodal force contribution when an analysis was run.

This arrangement was convenient for use in Strand, but was discarded in favour of a
spreadsheet based equivalent for two reasons; first, to ensure the method of generating
forces would be common for Strand and Excel, so that results would be directly compara-
ble; and second, because including plate elements in the analysis adds to the rigidity of the
dome. Though this may appear beneficial, FE analysis of plate elements is a considerably
more complex procedure than the analysis of truss elements. It was desirable to keep the
analysis simple and focused on the geodesic skeleton. Aside from making the spreadsheet
stiffness solver easier to follow, this also allowed the dome to be considered in situations
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where it may not be built with a reinforced concrete shell, for example, when providing
the framework for the greenhouses mentioned in the Water Bank project complex (see
Section 2.2.3).

In order to divide the self weight of the structure between the nodes in an equivalent
way to Strand’s gravity method, the area supported by each node had to be calculated.

The shell was assumed to be approximated by loaded triangular plates; hence each
triangle was bisected to evenly split the plate load distribution between the nodes. For the
V3 5/8ths dome, three unique chord lengths A, B and C make up the possible triangle
sizes for any given geometry. It was therefore possible to determine the area of each
triangle, and, as each triangle was supported equally by three corner nodes, a third of the
load on each plate was allocated to each node.

A similar, but simpler method was applied to find the distribution of member forces
between nodes; assuming element homogeneity, then simply half the length of each con-
necting member is supported by the node under inspection.

Figure 15: Example area division for a node

For example, in Figure 15, the node under inspection is bordered by five triangulated
sets of elements, each consisting of two element lengths; two of A and one of B. The area
of each plate in this case is 1

2AB, and hence the total applied force on this node due to
the shell would be

Fshell = 5× 1
3 ×

(
(1
2AB)× ρshell g t

)
, (20)

where t is the thickness of the shell, ρshell is its density and g is acceleration due to
gravity. All 5 members connected to the inspected node are of length A in this example,
hence the nodal applied force due to the elements’ self weight would be

Felem = 5× 1
2 × (A× Aelem) , (21)

where Aelem is the cross sectional area of the members.
Once these equivalent support reactions for all nodes were calculated, the sum of

reactions in Strand for an isolated self weight load case was compared to those determined
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in Excel to confirm that they coincided.
More components of self weight, including mesh density and joint weight were later

included using the same distribution method to allow a greater amount of flexibility
designing the structure. The imposed loading cases were similarly calculated.

4.4 Assumptions

In order to analyse the V3 5/8ths, Class I, Icosahedron based Pabal dome (with 61 nodes
and 165 elements), and based on some of the considerations discussed previously regarding
modelling forces on the structure, the following assumptions were made for the analysis.

• The good practice guidelines outlined in Eurocode 3, Section 5.1 apply.

1. Analysis shall be based upon calculation models of the structure that are ap-
propriate for the limit state under consideration.

2. The calculation model and basic assumptions for the calculations shall reflect
the structural behaviour at the relevant limit state with appropriate accuracy
and reflect the anticipated type of behaviour of the cross sections, members,
joints and bearings.

3. The method of analysis shall be consistent with the design assumptions.

• The structure’s working life was assumed to be 50 years (category 4, EC0-30, Table
NA2.1), and the assumed building use was residential (category A).

• The door (see Fig. 6) and any windows in the dome structure were sufficiently spaced
and installed in such a way that they would not reduce the structure’s rigidity.

• The analysis was not rate dependent, i.e. time related effects on the structure, such
as creep, were ignored.

• The boundary conditions assume that the structure was fully fixed at all its nodes
at ground level.

• Members were assumed to be their correct mathematical geodesic lengths, so that
no stresses were induced due to mismatched lengths.

• Any beneficial contribution to the structure due to a stressed skin effect from the
reinforced ferrocrete shell described in Section 2.3.5 was ignored.

• The components that make up the structure were homogenous and isotropic.

• The analysis was static (where conditions are independent of time, as opposed to
dynamic, which would consider behaviour under time varying conditions, such as
earthquakes).
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• The structure was modelled as a space truss; assuming that all joints were pinned.
This was a reasonable assumption to make, for the reasons discussed in Section 2.3.3.

• The members were assumed to be sufficiently squat so that buckling effects could
be neglected.

• The analysis was isothermal (independent of temperature).

4.5 Analysis

The dome analysis was completed in Strand based on the assumptions listed in Section 4.4.
The purpose of the analysis was to explore which load cases were the most significant and
to provide some solutions to which the Excel based FE method could be compared to for
accuracy.

The dome was set to a radius of 3m, with its base expanded to equal the radius (see
Section 4.2), as this is one of the most common kit configurations used at Vigyan Ashram.

Five load cases, described below, were considered individually and then in combi-
nation, using the recommendations for safety factors supplied by the British Standards
Institution (BSI) Eurocode13 0: Basis of Structural Design [BSI, 2007].

4.5.1 Load Case I: Self weight

Based on the technical drawings contained in Rolly [2007] and the information provided by
Vigyan Ashram, the thickness of the ferrocrete shell was estimated to be 50mm, bedded
on two grades of reinforcing mesh; a coarse (gauge-19) square welded mesh and three
layers of finer (gauge-18) 1” chicken wire mesh14.

The joints and elements were assumed to be fabricated from mild steel. A nominal
mass of 1kg was specified for the joints, and the truss elements were assumed to be
25 × 25 × 3 equal angle sections made from rolled steel15; a choice reflecting the most
common member type used by Vigyan Ashram.

The properties of these structural components are summarised in Table 1.

4.5.2 Load Cases II & III: Soil

Two soil load cases were investigated (Figure 16). The first assumed the soil would be
buried uniformly around the dome up to its tip, which for a dome with a radius of 3m is
a depth of 3.59m16. The second considered a case of non-uniform burial, a more realistic
situation where only half the dome was buried under a soil mass.

13Eurocodes will henceforth be abbreviated to “EC” and will always refer to BSI [2007].
14Ferrocrete associated data from Hartog [1984].
15Steel data from Cobb [2007].
16Recall that odd order frequency domes are not hemispherical (Section 2.3.2), and hence the height

of the dome is not equal to the radius.
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Table 1: Element and joint properties
Material Parameter Symbol Value Unit
Steel unit weight γsteel 77.2 kN/m3

Young’s modulus E 200 GPa
Element cross section Aelem 157 mm2

Ferrocement unit weight γshell 22 kN/m3

Thickness of ferrocement tshell 50 mm
Mass of coarse mesh mc 1.15 kg/m2

Mass of fine mesh mf 0.93 kg/m2

Joint mass mj 1 kg

(a) Load Case II: full burial (b) Load Case III: half burial

Figure 16: Soil loads considered

In both cases the soil used was assumed to be the regional topsoil: Black Cotton, with
the parameters17 summarised in Table 2.

4.5.3 Load Case IV: Wind

The wind load case on the structure was calculated following the assumptions described
in Section 4.3.4. The prevailing wind direction was assumed to coincide with the global
X direction (Figure 11). Using Equation 19, the face wind force to be applied was

Fw = 0.7 ×
(5

8π32
)
× 0.584 = 7.22kN . (22)

17Data based on the information provided by Ranjan and Rao [2000].
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Table 2: Black Cotton soil properties
Parameter Symbol Value Unit
Shear angle φ 22 degrees

Bulk unit weight γbulk 20 kN/m3

Active pressure coeff. Ka 0.455

4.5.4 Load Case V: Imposed

A vertical imposed load of 0.6kN/m2 was allowed for. This was a sensible value for roof
maintenance access, allowing for two workmen with tools to work on the roof.

4.5.5 Combination load cases

Three combination cases were considered, based on the safety factor recommendations for
permanent and temporary loads on structures set out in EC0.

1. Combination I: This was chosen to model a simplified case of full subterranean usage
of the dome. The full soil loading and self weight cases were factored as permanent
loads, and imposed loading was factored as a primary case temporary load. Wind
loading was ignored, as the dome would not be exposed to any wind.

Combination I = 1.35(Case I + Case II) + 1.05(Case V)

2. Combination II: This modelled a more realistic case of subterranean usage, where
the dome may be thought of as buried in part of an embankment. Imposed loading
was assumed to be the primary temporary load, wind on the exposed face of the
dome a secondary temporary load.

Combination II = 1.35(Case I + Case III) + 0.75(Case IV) + 1.05(Case V)

3. Combination III: This model reflected a more general usage of the dome structure.
The case considers the only permanent load to be the self weight of the structure.
Since the structure would be fully exposed to the elements, it was decided that wind
would be the primary temporary load. Workers accessing the roof would be a rare
occurrence, so imposed loading was factored as a secondary temporary load.

Combination III = 1.35(Case I) + 1.05(Case IV) + 0.75(Case V)

4.5.6 Results

The results of the Strand analysis are shown in Table 3. In the case of the maximum
displacements, us, the global axis direction in which the displacement acted is specified
after the number.
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Table 3: Strand analysis results
Case Max. Axial Forces (kN) Max. Disp. (mm)

Tensile Compressive us
Case I 4.2330 3.0366 -0.8961 (Z)
Case II 10.3014 69.7234 -6.8791 (Z)
Case III 33.3680 102.4470 7.8199 (X)
Case IV 1.0611 1.1811 0.2248 (X)
Case V 2.1608 1.5500 -0.4571 (Z)
Combination I 21.8374 99.5681 -9.9609 (Z)
Combination II 39.6312 143.9120 -13.0223 (Y)
Combination III 7.7368 5.9753 -1.5109 (Z)

4.5.7 Discussion

Several conclusions can be drawn from this basic analysis. Firstly, there is a clear indi-
cation as to why the geodesic dome structures are failing in the Water Bank project; the
soil loading cases produce displacements an order of magnitude greater than for the other
cases. Similarly, the compressive forces in the members are considerably larger, which
indicates that premature failure of members and joints could be expected.

Under normal design conditions, the geodesic structures were found to deflect very
little. Even under Combination III, the factored deflections and axial forces remain low
for such a sizable structure.

An intuitive observation was that a symmetrical load (such as in Cases, I, II and V),
produced a symmetrical distribution of forces in the members. Perhaps not so intuitive
was that asymmetric loads produced much larger member forces. This can be seen clearly
from comparing Cases II and III: the former is buried with twice the volume of soil of the
latter, yet it is the asymmetric load case that develops considerably larger axial forces.
This supports the findings of Pakandam and Sarshar [1993], where a similar analysis was
carried out using snow loads.

It was also observed that the magnitude of the compressive forces exceed those of
tensile forces predominantly in the soil load cases. This makes logical sense, as large
external forces are acting to squash the dome inward, which would be expected to induce
larger compressive forces inside the geodesic network.

5 Joint testing

5.1 Introduction

This section of the report describes how a relationship between the disc-joint properties
and the ultimate failure load of a joint was developed.

To validate the structural stability of a post-analysis dome, it was necessary to know
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whether the axial forces calculated would lead to failure of the joint. The connections
used by Vigyan Ashram are discs rather than lap joints, which meant that the Eurocodes
for connection design did not offer a method of estimating their capacity, as the code only
provides a relationship for joints with a constant cross section.

In order to develop a parameter linked relationship, a dimensional analysis was per-
formed, identifying dimensionless groups of parameters that required further investigation
(the benefits of this are discussed in Section 5.3). These parameters were then investigated
using both physical and computational testing:

• Some joint replicas were fabricated in-house at Durham University and tested to
destruction to produce some “real life” data.

• Computational models of the discs were developed, testing a large number of con-
figurations using stress analysis in Strand.

5.2 Pabal disc joints

Figure 17: Close up of Pabal dome joint

The joints used by Vigyan Ashram are stamped discs or “hubs” which have an array
of pre-drilled holes to which the truss elements of the structure are bolted to, as shown
in Figure 17. Two18 different types of joint are required to build any geodesic dome
configuration - those that connect six elements (“hexagonal” discs) and those that connect
five elements (“pentagonal” discs).

18Arguably four-noded connections are needed for the ground level perimeter ring, however these can
effetively be produced by using only four of the six connections on a hexagonal disc.
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The discs are fabricated from scrap mild steel, using a fly press which stamps them
into the correct shape, including two distinctive crimps, which add bending strength to
the disc and also aid with stacking for storage and transport.

(a) Hexagonal disc (b) Pentagonal disc

Figure 18: Uniaxial loading of bolt array

Each individual bolt array is loaded uniaxially, as shown in Figure 18. For the most
common design configurations, tension forces are usually the prevalent axial force in the
structure (cf. Combination III in Table 3).

By inspection, a joint will always have a greater capacity against compressive failure
than tensile failure19, as the gross cross section of the material resists the load, whereas
in tension only the net area of the material resists the load (as reductions must be made
for bolt holes).

This means that even in cases where the largest magnitude axial force is compressive,
if evidence can be provided to support that a joint will not fail under that magnitude
of force in tension, then neither will it fail in compression. This simplifies our task of
developing an equation to predict the failure load of the disc joints, as tensile failure
alone can be conservatively considered.

5.3 Dimensional analysis

Massey [1998] states that complete solutions to engineering problems can seldom be ob-
tained using analytical methods alone, and experiments are usually necessary to determine
fully the way in which one variable depends on others. Dimensional analysis is a tech-
nique that can be applied to reduce the number of experiments required to obtain these
relationships.

19This is assuming that instability (buckling) effects in compression may be ignored.
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The first task in the process of dimensional analysis was to decide which variables may
effect the solution and express them in terms of their dimensional formula. No quantity
that may have affected the problem was overlooked, save for quantities that only had
a indirect contribution20. The quantities considered were broken down into dimensional
components (mass [M], length [L] and time [T]) in Table 4.

Table 4: Dimensional analysis: step 1
Quantity Symbol Dimensional forumula

[M] [L] [T]
Failure strength fu 1 -1 -2
Plate thickness t 0 1 0
Hub radius r 0 1 0
Axial force Faxial 1 1 -2

The objective of dimensional analysis was to assemble the quantities into a smaller
number of dimensionless groups. To achieve this, the variables were arranged in a way
that removed their dependence on individual reference magnitudes, one after the other.

In this case, dependence on the mass dimension [M] was removed first, by dividing
through by fu, giving Table 5.

Table 5: Dimensional analysis: step 2
[M] [L] [T]

fu/fu 1-1=0 -1-(-1)=0 -2-(-2)-0
t 0 1 0
r 0 1 0
Faxial/fu (1-1)=0 1-(-1)=2 (-2)-(-2)=0

As fu/fu gave unity, which is not a variable, it was eliminated. Dependence on the
length dimension [L] was then removed by dividing through by r, giving Table 6.

Table 6: Dimensional analysis: step 3
[M] [L] [T]

t/r 0 1-1=0 0
r/r 0 1-1=0 0
Faxial/ (fu × r2) 0 2-(1× 2)=0 0

At this point, all dimensions had been eliminated from Table 6. r/r gives unity and
was hence eliminated, leaving two reduced dimensionless groups:

Faxial
fur2 and

t

r
(23)

20In Table 4, Young’s modulus was neglected as this relates to the failure strength of the material.
Similarly, temperature effects were ignored as these were material dependent.
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In order to determine the relationship between these two groups, some experimental
work was required.

5.4 Tension testing

5.4.1 Joint fabrication

Vigyan Ashram initially planned to send some sample joints for testing at Durham Uni-
versity; this was however ruled out due to expensive shipping costs. It was therefore
necessary to design and fabricate some replica joints. Engineering drawings of the joints
were subsequently drafted (see Appendix D), based upon the technical illustrations pro-
vided by Rolly [2007] and advice of Vigyan Ashram.

Durham University did not possess a press sufficiently powerful to create the bespoke
joints from mild steel, hence a custom built press was instead used to fabricate joints
from sheets of aluminium. Though not an ideal representation, the results would still be
suitable for comparison between practical and computational models.

The joint fabrication was a labour intensive process, and hence only a limited number
of discs were made. A total of six discs were made: two pairs of 1.5mm hexagonal and
pentagonal discs and one pair of 2.0mm hexagonal and pentagonal discs.

5.4.2 Apparatus

Oil pump control

Upper jaw

Lower jaw 50mm

Fine‐tune 
oil strain

Position 
dial

Oil gauge

Figure 19: Denison loading machine

A Denison tension/compression loading machine was used for the tests (Figure 19).
This machine was capable of applying a uniaxial tension force of up to 25kN, measuring
force/displacment data electronically into a Windows based software package. At the
time of use the machine was calibrated to a level complying with the United Kingdom
Accreditation Standard (UKAS).
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Finding a method of clamping the discs that would accurately represent the conditions
to which the joint experiences in situ was problematic. A geodesic tensegrity network of
the dome is three dimensional, whereas the Denison could only emulate one dimensional
loading.

(a) Hexagonal rig (b) Pentagonal rig

Figure 20: Test rigs for joints

Several clamping methods were considered for the disc that would preserve the uniaxial
tension case, but were hindered by the 50mm clearance between the teeth of the top and
bottom clamps. It was decided to opt for a simple test rig using thumbscrews to attach the
joint to predrilled (5mm thick) steel bars considerably stiffer than the test joint, as shown
in Figure 20. This setup introduced a bending component into the tests, an undesirable
effect, but was the most feasible option to allow experimentation to proceed.

5.4.3 Risk assessment

The experiment procedure was considered fairly low risk and only standard operating
precautions were employed. As aluminium is a ductile metal, non-explosive failures were
expected. The Risk Assessment and COSSH form for the experimental work may be
found in Appendix F.

5.4.4 Method statement

The following operating procedure was used:

1. The Denison was switched on, and the oil feed activated to around half load, which
began to separate the top and bottom clamps hydraulically. The oil feed rate was
reduced to hold the Dension stationary when the top and bottom clamps were spaced
approximately at the right height to fit in the test rig.

2. A joint was then selected for testing, and its thickness checked and noted at five
approximately even spaces around its perimeter using a micrometer (accurate to
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±0.005mm).

3. The joint was attached to the test rig using thumbscrew connections and clamped
in the top and bottom jaws of the Denison.

4. The Denison datalogging software was loaded and the current position and registered
force were set as datum values.

5. While continuing to hold the clamp closed with the winding key21, the oil flow was
increased so that the teeth continued to separate slowly. A load of approximately
0.2kN was applied before releasing the clamp.

6. The oil flow was continually adjusted to keep the rate of separation at approximately
0.025mm/s throughout the test to maintain a smooth loading curve.

7. When the disc failed, the test was stopped, and the positions of the top and bottom
clamps were reset to an appropriate distance to repeat the above procedure for the
next joint.

5.4.5 Results

(a)

(b)

(c)

(a)

(b)

(c)

Figure 21: Tension test results
21This was because the clamps are held together by the friction of the teeth. When little or no load

was applied, the teeth would slip free unless physically restrained from doing so.
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The first pair of 1.5mm thick joints were tested as a trial run, in order to gain familiarity
with the machine and experimental procedure before the full tests were run. The force-
displacement plots for the remaining four joints are shown Figure 21.

5.4.6 Discussion

Several observations may be made about Figure 21. Each test plot begins approximately
linearly, save for a kink at point (a), corresponding to the point where the disc deforms
to align with the axial tension. Each disc reaches a peak capacity (b) after which the
joint begins to tear in shear. Slight recoveries in strength were observed at point (c) as
the joint crimps formed a necking region for torn material which temporarily impedes the
shearing action.

Of particular interest was that the pentagonal joints in each case failed at a lower
force than the hexagonal equivalents. This is counter intuitive as Figure 18 clearly shows
that for a common load, the pentagonal bolt array will have a greater equivalent area to
resist loading, so failure would be expected to occur hexagonal disc first.

This difference may be due to the less than ideal simplifications made for this test.
In particular, the T-shaped clamping arrangement (Figure 20(b)) for the pentagonal disc
was fairly far removed from the uniaxial tension case that was of interest and this may
have adversely influenced its load capacity.

5.5 Stress analysis

A series of non-linear joint analyses were run using Strand to estimate the force at which
joints would fail for various combinations of material parameters. Each test applied a
series of incremental loads to the plate, calculating the resulting stresses and displacements
in the material.

5.5.1 Model development

CAD models of the joints were created in Solidworks and imported to Strand. Problem
symmetry was taken advantage of to reduce the analysis to the loaded area of a single
bolt array (as shown by the hatched area of Figure 18).

Boundary conditions were prescribed along each of the two symmetry edges of the
element, preventing any translation or rotation, save for radial slip. An incremental force
was applied in the plane of the disc using a face pressure at each of the two bolt holes,
representing the axial force transferred to the joint through the connection bolts.

The plates were meshed for analysis in two stages: a tet6 element surface mesh,
followed by a tet10 brick mesh, both at a 3% mesh density. Before the investigation
commenced, the mesh quality was checked using a convergence test. Three progressively
finer meshes were run to calculate the planar displacement of an element at the center of

36



(a) 3% mesh (b) 2% mesh (c) 1% mesh

Figure 22: Mesh convergence

Table 7: Convergence test results
Mesh grade Run time(s) Displacement (mm)
3% mesh 6 0.0183190
2% mesh 18 0.0186015
1% mesh 718 0.0187712

the outer bolt hole (Figure 22). The results (Table 7) confirmed that the mesh quality
was reasonable, as the results were clearly converging on a solution at ≈ 0.0188mm.

Three different plate thicknesses (1.5mm, 2.0mm and 3.0mm) and three different mate-
rial properties (6082:T6 aluminium, S275 steel and S450 steel) were investigated. Results
were repeated for both hexagonal and pentagonal material configurations, giving a total
of 18 separate analyses. Ideally, the disc radius should also have been varied to fully in-
vestigate the dimensionless groups in Equation 23. However, a total of 54 analyses would
have been required to investigate 3 radii variations, an unfeasible amount of work given
the time frame of this project22. For duration of the computational work, the disc radius
was fixed to 77.5mm.

(a) Aluminium (AL6082) (b) Steel (S275) (c) Steel (S450)

Figure 23: Sketches of material stress-strain relationships

A linear static analysis could not be used to predict the failure load, as this assumes the
material always behaves linear elastically. Non-linear analysis (Section 2.4.2) was instead

22The total required number of analyses to investigate a relationship increases to the power of the
number of variables.
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used, as this models the behaviour of the material as parts begin to deform plastically,
until a limit is reached where deformation will continue indefinitely with no increase in
applied force.

The model also assumed finite deformations, where the model progressively considers
the deformed shape from the previous load increment. This is more representative of
reality, but more computationally intensive than assuming infinitesimal strains and small
displacements (where deformations are considered only relative to the original geometry).

Non-linear analysis required a stress-strain curve to be assigned to each material to
inform Strand how the material would behave beyond yield. Material stress strain re-
latioships are often complex (see curve (1) in Figure 23), so to simplify the analysis, a
perfectly plastic relationship was assumed, where ultimate failure was assumed at yield
(curve (2) in Figure 23). This was a conservative assumption to make, as all the materials
considered undergo plastic work hardening effects that improve capacity before ultimate
failure.

5.5.2 Results

Figure 24: Plot of relationship between dimensionless variables

The force-displacement plots may be found in Appendix B. For each analysis, the axial
force at which the displacement appeared to tend towards infinity (i.e. the ultimate load)
was estimated from the graph (using the weaker 6-noded joint) and the dimensionless
variable values from Equation 23 were calculated. The data used be found in Table 8 and
the resulting graph from plotting the dimensionless groups is shown in Figure 24.
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Table 8: Non-linear joint analysis results
Material Faxial(kN) t(mm) fu(MPa) t/r Faxial/fur

2

AL6082 6.7 1.5 205 0.0194 0.005441
AL6082 7.3 2.0 205 0.0258 0.005929
AL6082 8.0 3.0 205 0.0387 0.006497
S275 14.0 1.5 430 0.0194 0.005421
S275 15.1 2.0 430 0.0258 0.005847
S275 16.7 3.0 430 0.0387 0.006466
S450 17.7 1.5 550 0.0194 0.005421
S450 19.2 2.0 550 0.0258 0.005847
S450 21.2 3.0 550 0.0387 0.006466

5.5.3 Discussion

Figure 24 indicates some form of linear relationship may be established between the
two variables. It is unreasonable to include the radius in the expression calculated, as its
influence on the relationship was not rigorously tested. The linear polynomial of Figure 24
can therefore be simplified by fixing the considered radius size as a constant,

Faxial
fu × 77.52 = 0.0533 t

(77.5)0.0044 , (24)

and rearranging,

Faxial = fu (4.13t+ 26.43) . (25)

The force-displacement curves (Appendix B) indicated that for the theoretical stress
analysis, the difference in capacity between hexagonal and pentagonal joint arrays was
minimal. Intuitively, the pentagonal joint capacity was always the greater of the two in
each test, in contrast to the practical test findings discussed in Section 5.4.6.

Table 9: Comparison of theoretical and practical joint capacities
Material fu (MPa) t(mm) r (mm) Lab Faxial(kN) Theoretical Faxial(kN)
AL6082 205 1.5 77.5 6.6 6.7
AL6082 205 2.0 77.5 9.0 7.1

As the pentagonal joint results were considered unreliable for the physical tests, the
tensile failure values for the hexagonal value, taken from Figure 21, were compared to to
the theoretical equivalents, calculated using Equation 25. The results shown in Table 9,
though not comprehensive, indicate that for low joint thicknesses the theory accurately
predicts the failure force, while for greater thicknesses it provides a 20% underestimation
of their capacity.

There are a number of reasons that the theoretical estimations become overly conser-
vative.
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A possible cause is that isotropic work hardening effects were neglected in the the-
oretical model (see Figure 23), and this contribution became more pronounced as the
thickness of the joint increased.

A trade-off between computational efficiency and accuracy had to be made, and it is
possible that the FE mesh was not fine enough to obtain good results. Additionally, the
boundary conditions assumed in the model represented a worst case, and in reality limited
displacements take place at the assumed boundaries of the disc segement modelled.

A final possible reason for the reserve strength of the joint is that the loaded segment
area was conservatively assumed. When the joint as a whole is loaded, it reaches a state of
equilibrium. As not all the loads on the joint may be of the same magnitude, it logically
follows that larger bolt arrays may be supported by a larger area of the joint than that
assumed, and therefore have a greater capacity of resistance.

6 Spreadsheet development

This section of the report describes how the FEA based package for analysing geodesic
domes works, with reference made to the theory of Section 3. The features that make
the layout user friendly and accessible, as well as limitations of the package, are also
discussed.

6.1 Package structure

The package was broken down into three Excel files, as a single spreadsheet became un-
wieldy to run due to the large amount of data being processed. These files guide the user
through the stages of performing a dome analysis and design. First, the user defines a ge-
ometry and loading case on the structure in “FEA_Input”. The spreadsheet subsequently
calculates the force vector which is read into the second spreadsheet “FEA_Solver”, where
the structure stiffness matrix is formed. Equation 12 is then solved for the structure
displacements. The final spreadsheet, “FEA_Output”, post-processes the displacement
results to give member forces in the structure. The worst case force produced is utilised
in a series of calculations that allow the user to optimise the structure to carry the load
and make savings on materials.

Start FEA_Input FEA_Solver FEA_Output End

Define 
geometry, 

materials and 
forces

Force 
vector {F}

Displacement 
vector {U}

Axial member 
forces, design 
calculations

Figure 25: Flow chart of design process
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6.2 FEA_Input

FEA_Input is the spreadsheet in which the user defines all the parameters of a particular
dome - geometry, materials, loads and partial safety factors. The main output of the
spreadsheet is the force vector.

The spreadsheet consists of five worksheets, described below.

• Summary: this is the only worksheet in the FEA_Input file requiring user inter-
action. All the variables are defined here, and the various worksheets tabs link to
these parameters to calculate forces. The force vector is calculated based on the
summation of various factored loads.

• Graphs: the level of soil applied to the structure above the base of the foundations
is calculated and represented graphically on this worksheet. Additionally, this page
shows which portion of the dome is considered loaded.

• Soil: the nodal forces in the structure due to soil loading are found using Rankine’s
theory for earth retaining structures as described in Section 4.3.3. Various soil types
may be selected from, imposing different parameters on the calculations. The user
can also specify the depth and area of the dome that is loaded.

• Wind: this worksheet calculates the worst case effect of a wind pressure acting on
one face of the structure, based on a user-defined wind load (see Section 4.3.4 for
details).

• SW & Imposed: the nodal forces due to the self weight of the structure and due
to any specified imposed loading are calculated in this worksheet. The methodology
of this was previously discussed in Section 4.3.5.

6.3 FEA_Solver

The FEA_Solver spreadsheet emulates the stiffness method discussed in Section 3.1 to
form Equation 12. A Gaussian elimination method is then used to solve for the displace-
ment vector {U}. The solver spreadsheet runs automatically when opened, with no user
input required.

6.3.1 Stiffness matrix assembly

The spreadsheet first reads in the force vector and specified parameters from FEA_Input
and uses the information about the geometry to scale the coordinates in the “nodal
coordinates” worksheet. This in turn is used to calculate the total length L of each member
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Figure 26: Calculation of project member lengths

and the axis projected lengths Lx, Ly, Lz (as shown in Figure 26), using predetermined
information about how elements and nodes link together in the structure23.

[T]T [T]  (Eqns 9 and 11)[klocal] (Eq
n 6)

[kglobal] (Eq
n 8)

Figure 27: Assembly of the global stiffness matrix

Each local element stiffness matrix [klocal] is calculated using Equation 6. Using the
projected member lengths, [R0] and resultantly [T ] are found for each element using
Equations 11 and 9 respectively, which may be transposed to find [T ]T . Finally, Equation 8
is used to determine the global element stiffness matrix (see Figure 27).

The numbering scheme used for degrees of freedom may appear abstract at first, but
the system was chosen to add clarity to which degree of freedom was under scrutiny - the
last number is always “1”, “2” or “3”, referring to whether it was an X, Y or Z directional
DOF in the global coordinate system. The remainder of the number (disregarding the
last unit) describes which node the degree of freedom belongs to. For example, “312”
would refer to node 31’s Y directional DOF.

In order to assemble the full structure stiffness matrix from the 165 global element
stiffness matrices without resorting to a programming script, several intermediate stages
were used in Excel to get the data in a form that allows the summation of cells with
common values, as described below.

23The knowledge of how the elements link up was a feature built-in to the spreadsheet, based on the
element and node numbering scheme used by Strand7.
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MMULT

...

...

Figure 28: Intermediate matrix assembly step

1. A 6 × 183 Boolean matrix24 [B] was created for each element. This matrix was
labelled such that only the rows with DOF associated with the local stiffness matrix
were considered, whereas the full list of 183 degrees of freedom were included for
the columns. Excel checked each cell’s row and column reference, producing a zero
if they do not match, and a one if they do (Figure 28).

2. For each element, the global stiffness matrix and the Boolean matrix were then
multiplied together using Excel’s built in matrix multiplication function “MMULT”.
This produces a partly assembled version of the structure stiffness matrix, which
shall be henceforth referred to as an intermediate [C] matrix. This can be thought
of as fully assembled in terms of columns but not rows (Figure 28),

[C] = [kglobal][B] . (26)

3. Once a [C] matrix was produced for each element, it was possible to sum all the
matching rows in the assembly to complete the full 183 × 183 structure stiffness
matrix. An Excel function known as “SUMPRODUCT” was used to achieve this:
for each cell in the 183×183 structure stiffness matrix, the calculation seeks the row
and column DOF reference of the cell and then looked for each corresponding row
and column match in the intermediate matrices. It then summed together the cell
values for all the matches and outputs the result in the structure stiffness matrix.

Figure 29 shows an example of the method for a simple set of matrices. For instance,
if the value of the assembled structure stiffness matrix circled in red was of interest, the
SUMPRODUCT function would seek its reference position (2,2) and look in the above

24A Boolean matrix is a matrix with entries from the Boolean domain B = {0, 1}. Such a matrix can
be used to represent a binary relation between a pair of finite sets [Flegg, 1965].
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Figure 29: Structure stiffness matrix assembly using SUMPRODUCT

transition matrices for the same reference numbers. In this case, it would find two matches,
circled black. The matching cells are summed to get the final value which is output in
the assembled structure stiffness matrix. The same principles apply for the calculation of
each stiffness value in the structure stiffness matrix.

6.3.2 Solver

At this point, the spreadsheet has fully defined the force vector {F} and structure stiffness
matrix [K] in Equation 12. In order to solve the system, Excel uses a built-in macro
written in Visual Basic for Applications (VBA) to perform Gaussian elimination. This
solver method was chosen as it is popular and well documented, making it easier for
someone wishing to learn the mechanics to follow (see Section 3.2).

This code was adapted from one presented in Billo [2007], operating as a user defined
array function25 in the form: GaussElim(coeff_matrix, const_vector), where coeff_matrix
is set to equal the cell reference area of the structure stiffness matrix, and const_vector
is set as the cell reference area of the force vector; both having been first reduced by
applying the perimeter ring boundary conditions.

25An array function is a special method of calculation employed when working with arrays, matrices
and vectors. Rather than applying one formula to one cell, a formula is applied to an array of cells. For
more information, see Pearson [2008].
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6.4 FEA_Output

The main purpose of the FEA_Output spreadsheet is to determine the internal axial
member forces by post processing the results of the structure stiffness method, and to
allow the user to tailor the fabrication details of the dome so that a safe and economical
design is produced.

6.4.1 Postprocessing

Figure 30: Calculation of member axial forces

The first step taken by Excel is to import the displacement vector previously calcu-
lated in FEA_Solver. Information about the member lengths and properties are also
read into the worksheet. The displacements are sorted by DOF for each element, and
the transformation matrix (Equation 11) is applied in reverse for each node to get the
displacements back in terms of the elements’ local coordinate system. Note that the
spreadsheet uses [R0] to transform each node’s 3 degrees of freedom, rather than applying
the full transformation matrix to the full force vector as described in Equation 9. The
methods are entirely equivalent, but the chosen approach is slightly more compact and
therefore a better method of displaying the information.

The local x’ (Figure 8) axis displacements are subtracted from one another, giving the
change in length of the element due to the applied external forces on the structure. The
strain in each member is calculated using Equation 3, and, by virtue of Hooke’s law, the
stress can be found using Equation 4. Finally, the axial force in each element is found
using Equation 2 (see Figure 30).

6.4.2 Calculations

The calculation worksheet was designed to produce a comprehensive document summaris-
ing any analysis and design case. The layout was thereby set out in a printer friendly
format, so that pdf or paper based printouts could be made for permanent record. An
example calculation print out may be found in Appendix E.

The worksheet was designed, where possible, to the guidelines of Eurocode 3 [BSI,
2007]. The ultimate design load of the structure was set as largest magnitude axial force
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calculated in the elements during post processing26. The spreadsheet makes checks for
safety for the Ultimate Limit State (ULS) and Serviceability Limit State (SLS).

The following four design checks were considered:

• Joint shearing failure (ULS): this check used the empirical relationship devel-
oped in Section 5 to estimate joint capacity. Equation 25 is additionally factored
by a material constant to represent variable material strengths in steel.

• Bolt connections (ULS): the bolts were checked using guidelines laid out for steel
bolted connections in EC3, Section 3: Connections made with bolts, rivets or pins.
Checks were made for both shear and bearing resistance of the bolts.

• Angle section (ULS): this checked the capacity of the equal angle truss elements
used by Vigyan Ashram against failure in tension at their smallest net cross-section,
i.e. where holes are drilled for the connections, using the guidelines in EC3-80,
Section 3.10.3. Bending moment checks for the section were not required for the
reasons discussed in Section 2.3.3.

• Deflection limit (SLS): this check was introduced to avoid severe deformations
of the structure that would impede its appearance or functionality under working
loads. The deflection limit was set to L/360, which the Eurocodes presented as
the most suitable limiting value for a member clad in a brittle material subject to
cracking (EC3-59, Section 7.2).

The worksheet also calculates relevant fabrication details, such as the number of joints
and different member lengths required to assemble the dome and utilises conditional
picture formatting to produce subdivision assembly diagrams for the dome (from Landry
[2002]) depending on which configuration is selected. It should be noted that while the
fabrication and assembly details can be calculated for many different dome configurations,
the FE solver method currently only considers the V3 5/8ths dome (see Section 4.4). The
expanded version of the fabrication details were created in anticipation that further work
may be carried out on the package to expand its analysis capability to any type of dome.
At present, the worksheet has warning features built in to inform the user if they attempt
a design mismatched from the analysis capabilities.

6.5 Discussion

Before the accuracy of the spreadsheet based analysis is compared to the benchmark
results set by Strand7, it is worthwhile discussing some of the features that make the
spreadsheet package user-friendly and well suited to the aims of this project.

26The reason this assumption could be made without regard to whether it is tensile or compressive was
covered in Section 5.2.

46



Firstly, the step-by-step layout of the spreadsheet (Fig. 25) leads the user through
distinct stages of modelling, analysis and design. By keeping to this format, the layout of
the spreadsheets was orientated towards explaining the purpose of each step.

While it is entirely possible to perform an analysis using this package without in-
depth understanding of the inner workings of the calculations, these were left visible
and accessible to the users interested in learning how the analysis works. To aid with
understanding the FE method, a user-guide was produced to accompany the package,
explaining the basis of the FE method and how the spreadsheet emulates it. Black box
steps were avoided wherever possible in the spreadsheets. For example, the structure
stiffness matrix may have been more efficiently assembled using a VBA macro, but the
step-by-step approach implemented in the spreadsheet was felt to be more suitable, as it
demonstrates the process with greater clarity. The only exception to this was Gaussian
elimination, which had to be performed as a Visual Basic script due to the looping nature
of solving a problem using this method.

Use was made of Excel based features such as conditional formatting to highlight cells
of interest (e.g. passed or failed calculation checks) or to add conditional warnings if the
user attempts something inadvisable (e.g. spacing bolts closer than the recommended
limit). Additional advice was provided to the user using Excel’s cell commenting feature,
where hovering over a commented cell brings up an information box with additional
dialogue explaining its function.

Table 10: Spreadsheet based FEA results
Case Max. Axial Forces (kN) Max. Disp (mm) % Relative error

Tensile Compressive ue (cf. Table 3)
Case I 4.2329 3.0366 -0.8960 (Z) 9.998× 10−5

Case II 10.2997 69.7237 -6.8789 (Z) 2.907 × 10−5

Case III 33.3654 102.4467 7.8202 (X) 3.836× 10−5

Case IV 1.0610 1.1811 0.2248 (X) 0.000× 10−5

Case V 2.1607 1.5500 -0.4570 (Z) 21.188× 10−5

Combination I 21.8353 99.5682 -9.9605 (Z) 4.016× 10−5

Combination II 39.6277 143.9114 -13.0222 (Y) 0.768× 10−5

Combination III 7.7372 5.9747 -1.5108 (Z) 6.619× 10−5

The results of the spreadsheet FE method are shown in Table 10. The boundary
conditions, forces and design assumptions made were identical to the case described in
Section 4.5. The relative error for each load case was found by normalising the maximum
Excel displacement ue by the maximum Strand7 displacement us (from Table 3) and
expressing it as a percentage:

error =
(

1− ue
us

)
× 100 . (27)
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For each load case, the relative error between Strand7 and Excel was found to be
negligibly small, indicating that the spreadsheet based FE method accurately imitates the
commercial package. The computation time to reach a solution was significantly longer in
Excel (typically 30-60s in the spreadsheet cf. to 3s in Strand), as may be expected, but as
the point of the exercise was not one of solver efficiency, this fact is perhaps unimportant.

7 Conclusions

Returning to the objectives defined in the project plan, it is possible to assess how com-
pletely the project objectives have been met. The main goal of this project worked towards
producing a Microsoft Excel based structural analysis method, to give Vigyan Ashram the
in-house capability to perform structural analysis. This has been successfully met, with a
spreadsheet based system that reproduces the results of an considerably more expensive
commercial finite element package using the structure stiffness method. A wide variety
of different load types and geometries can be applied to the dome, making the package a
versatile analysis tool.

The system has been designed for ease of use, even for someone with a minimal un-
derstanding of the method, while also leaving the mechanics of the method clear for those
who wish to learn it.

The objective to produce fabrication and design information has also been successfully
integrated into the package, leading the user from the stage of forming and analysing a
dome model through to using the results of the analysis to design safe joint connections.

A linear relationship was found between material properties and estimated failure
strength of the dome’s joints. Though this appeared to correlate well, time limitations
prevented a thorough testing of the influence of disc radius as a variable.

The physical tension tests performed were good for comparative, empirical studies, and
the results confirmed the theoretical relationship developed was a good match. However,
the accuracy of the values was questionable as they did not reproduce real conditions, and
more work would ideally need to be carried out to confirm the validity of the relationship.

The results of the Strand7 analysis were indicative of the problem in the Water Bank
project using subterranean domes; very large compression forces became prevalent in the
structure, especially in cases of asymmetric loading.

7.1 Further work recommendations

• Expansion of the spreadsheet method to consider more dome configurations. Cur-
rently the analysis focuses on the most common configuration (V3 5/8ths), but with
work this could be expanded, offering more flexibility in terms of fabrication and
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the size of structure that can be produced27.

• In depth investigation of the Water Bank project subterranean loading case. Though
the analysis and designs tools discussed in this dissertation will produce a safe
design for a subterranean dome, conservative assumptions were made to simplify
the loading and the capacity of the structure that may need to be reviewed for this
special case. For example, the contribution of any passive resistance in the soil was
neglected and the testing of the joints focused on tensile rather than compressive
failure.

• Work on improving the efficiency of the spreadsheet solver. For higher order prob-
lems, it may be necessary to investigate the implementation of node ordering algo-
rithms to minimise matrix bandwidth [Cuthill and McKee, 1969].

• Investigation into the design of the dome to improve load bearing capacity. For
example, discs were the only joint considered as they are the design which Vigyan
Ashram currently use and are set up to manufacture. Alternative joint designs may
prove to be cheaper, easier to fabricate or stronger.

• The modification of the spreadsheet analysis method to work on a freeware package,
such as OpenOffice28, so that the software cost associated with the program is
eliminated entirely.

27As member lengths for lower frequency domes will fail in buckling if particularly large radius domes
are planned; this limits the size of dome that can be achieved using a V3 dome frequency.

28http://www.openoffice.org/
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A Project Gantt chart

Figure 31: Project Gantt chart

B Joint force-displacement curves

Figure 32: Stress analysis force-displacement plot for 1.5mm disc
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Figure 33: Stress analysis force-displacement plot for 2.0mm disc

Figure 34: Stress analysis force-displacement plot for 3.0mm disc
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By.

Basic wind speed (clause 5.2)

From figure 1, the Indian windspeed map gives: Vb = m/s

Design wind speed (clause 5.3)

Where:

Assuming a standard design life of 50 years,
k1 = (Table 1, clause 5.3.1)

Assume that Pabal dome is built in category 2 open terrain, with well scattered obstructions:
k2 = (Table 2, clause 5.3.1)

Assuming no hills, cliffs or enscarpments that channel the wind are nearby:
k3 = (clause 5.3.3)

k4 = (clause 5.3.4)
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The following calculations determine the basic windspeed velocity for a geodesic dome structure built in an 
area nearby to Pabal, India.  The calculations are guidelines from the Indian Standards, IS875 (Part 3): 1987, 
Wind Loads for Buildings and Structures.  The relevant clauses to each calculation are given, and any 
assumptions are stated throughout.

Basic wind speed is based on peak gust speed averaged over a short time interval of about 3 seconds and 
corresponds to 10m height above the mean ground level in an open terrain (Category 2).

Design wind speed modifies the basic wind speed to account for terrain effects and the actual height of the 
building under consideration:

4321 kkkkVV bz 

Vz = design wind speed at any height z in m/s,
k1 = probability factor (risk coefficient) (see 5.3.1),
k2 = terrain roughness and height factor (see 5.3.2),
k3 = topography factor (see 5.3.3)
k4 = importance factor for the cyclonic region (see 5.3.4).

NOTE: The wind speed may be taken as constant upto a height of 10 m. However, pressures for 
buildings less than 10m high may be reduced by 20% for stability and design of the framing.

Assuming the structure is of normal importance (non‐industrial and not of post cyclonic importance, such 
as a cyclone shelter, community building or water tank):

By.

hence, assuming the height of the structure does not exceed 10m:

= x x x x x = m/s

Design wind pressure (clause 5.4)

Where:

hence,

pz =

The design wind pressure pd can be obtained as,

For circular or near–circular forms, such as the Pabal dome, the wind directionality factor is:
Kd = (clause 5.4.1)

Kd = (clause 5.4.1)

Kc = (Table 19, clause 6.2.3.14)

hence,

pd = x x x =

COPYRIGHT ©
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Wind calculations for Pabal dome
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The wind pressure at any height above mean ground level is obtained by the following relationship 
between wind pressure and wind speed:

26.0 zz Vp 

pz = wind pressure in N/m2 at height z, and
Vz = design wind speed in m/s at height z.

Where:
Kd = Wind directionality factor
Ka = Area averaging factor
Kc = Combination factor (see 6.2.3.13)

zcadd pkkkp 

Pressure coefficients are a result of averaging the measured pressure values over a given area. As the area 
becomes larger, the correlation of measured values decrease and vice‐versa. The decrease in pressures due 
to larger areas may be accounted for with a reduction factor.  Assume that no reduction factor applies to 
Pabal dome for simplicty, otherwise design pressure will become dependant on geometry.

Combining factors for wind pressure contributed from two or more building surfaces can allow a reduction 
factor because wind pressures fluctuate greatly and do not occur simultaneously on all building surfaces.  
However, assuming wind action on the Pabal dome acts in only one direction (worst case):
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